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» Context
Sources of faults in a system:

∗ Harsh environment
∗ Adversary

Risks?
∗ Undesired change in a program control flow
∗ System crash

Solution?
1. Implement countermeasures
2. Test them in practice (expertise is required)
3. Identify new vulnerabilities
4. Repeat
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» Fault Injection Simulation

Why would hardware simulation be useful?

∗ Does not require expensive equipment

∗ No risk to damage important components

∗ Allows precise actions on instructions and registers

∗ Environment is easy to setup

∗ Simulations are fast to perform and reproducible

Ideal to test countermeasures against fault injections.
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» Project Description

Objectives:
∗ set up simulation environment
∗ perform firmware vulnerability analysis

→ automatic fault injection simulation
→ SCA feature: cycle count annotation

Setup:
∗ ARM GNU Toolchain: C code compilation
∗ Unicorn: CPU emulation
∗ Python: simulation tool implementation
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» Methods

Several methods exist to inject faults in a system:

∗ Clock fault injection

∗ Voltage fault injection

∗ Electromagnetic fault injection

∗ Optical fault injection

∗ …
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» Fault Model Characteristics

Two main categories of fault injections:
∗ Global: affects global parameters (voltage, clock)
∗ Local: precise fault location (expensive equipment)

Fault models are essentially characterized by:
∗ Location

→ Spatial: point or area in the system
→ Temporal: instant during the execution
→ Precision level: bit, byte, variable, …

∗ Impact: skip, stuck-at, bit-flip, random byte, …
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» Countermeasures: Examples

∗ Double check important functions execution

∗ Double check branching conditions

∗ Verify that loops have not been aborted

∗ Avoid boolean values to access critical functions

M. Witteman. Secure application programming in the presence of side channel attacks. Aug.
2017. URL: https://www.riscure.com/publication/secure-application-
programming-presence-side-channel-attacks/.
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» Unicorn Engine Overview

∗ QEMU-based open-source project

∗ CPU emulator

∗ Multiple target architectures (ARM, ARM64, MIPS, RISC-V, …)

∗ Implemented in C, and many bindings exist

∗ No requirement regarding emulation context

∗ Easy to instrument (hooks on specific events)
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» Unicorn Engine Emulation

1. Create Unicorn instance

2. Read binary

3. Map program segments into instance memory

4. Prepare initial state/context (optional)

5. Define start and end addresses

6. Add hooks (syscalls, tracing)

7. Run the simulation
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» Unicorn Engine Fault Injection

Inject fault using method (1) or (2):

1. → 6. Prepare Unicorn instance (see previous slide)

7. Add fault injection hooks (1)

8. Start the simulation

9. Perform fault injection (2):
∗ halt simulation
∗ inject fault
∗ resume
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» Description

∗ Based on Unicorn and dedicated to 32-bit ARM architectures

∗ Using Python binding: easy to adapt to your needs

∗ Two command line scripts:
→ one to explore possible fault attacks
→ one to perform/reproduce a specific fault attack

∗ User may define external functions:
→ to set emulation context
→ to perform fault injection
→ to extract fault detection flags
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» Fault Models

∗ Skip instruction fault model

∗ Register-based fault models:
→ “on instruction” fault (transient)
→ stuck-at fault (permanent)
→ bit flip fault (transient)

∗ Memory-based fault models:
→ “on write access” fault (permanent)
→ “on read access” fault (transient)

Fault models are implemented using method (1), i.e. hooks.
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» Simulated Execution States

State Set of values extracted from registers and memory regions at a
given point of the emulation

Initial state State before the emulation has been started

Final state State after the emulation has been completed

Reference state Final state of a “sane” emulation
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» Status of Fault Attacks

∗ If fault detection flags are extracted through external functions:
→ fault is ignored if detection flag was raised,
→ otherwise, fault injection may be logged.

∗ Logging of fault injections works as follows:
→ fault injection is logged if a delta appears between the final state and the

reference state,
→ otherwise, fault injection is ignored.
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» Exploration of Fault Attacks Space

1. Select desired fault models

2. Try to perform a fault injection attack:
→ for each fault model,
→ for each instruction,
→ depending on written/read registers (if register-based),
→ for each value of the fault model parameters.

3. Identify the status of the fault attack

4. Log it if necessary

Note: limited set of values for each parameter of the different fault models
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Demo.
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» Conclusion

∗ Allows to inject faults in program running on specific architectures

∗ Should be useful to check if countermeasures work as expected

∗ Should allow to detect unknown vulnerabilities

∗ Does not allow to test all specific countermeasures (e.g. delay-based)

∗ Emulation of peripherals on a high level should be possible
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